

Metallurgical reliability: Ensuring integrity of steels for hydrogen pipelines

Roberto Bruna TERNIUM

Objective of the work

To fulfill these requirements — understanding of the composition-

processing -microstructure-property relationship, is needed.

Objective: to define the best practice for the production of steel for application in hydrogen high content pipelines.

Background: different forms of cracking...

HIC: hydrogen induced cracking

SSC: sulphide stress cracking

SOHIC: strain oriented hydrogen induced cracking

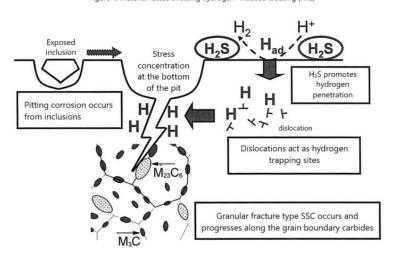
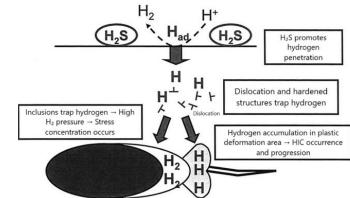
Cracking resistance depends on both on

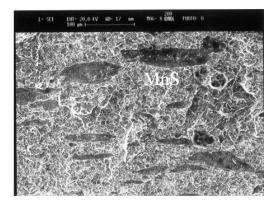
reduction of the **initiation** sites and on

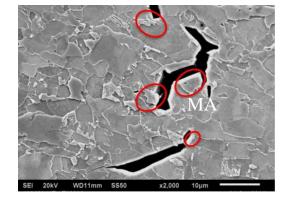
reduction de factors that contribute to the

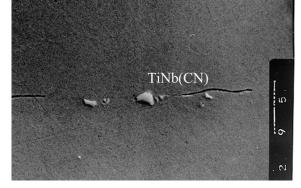
propagation of hydrogen-induced cracking.

Figure 4. Material factos affecting hydrogen- induced cracking (HIC)

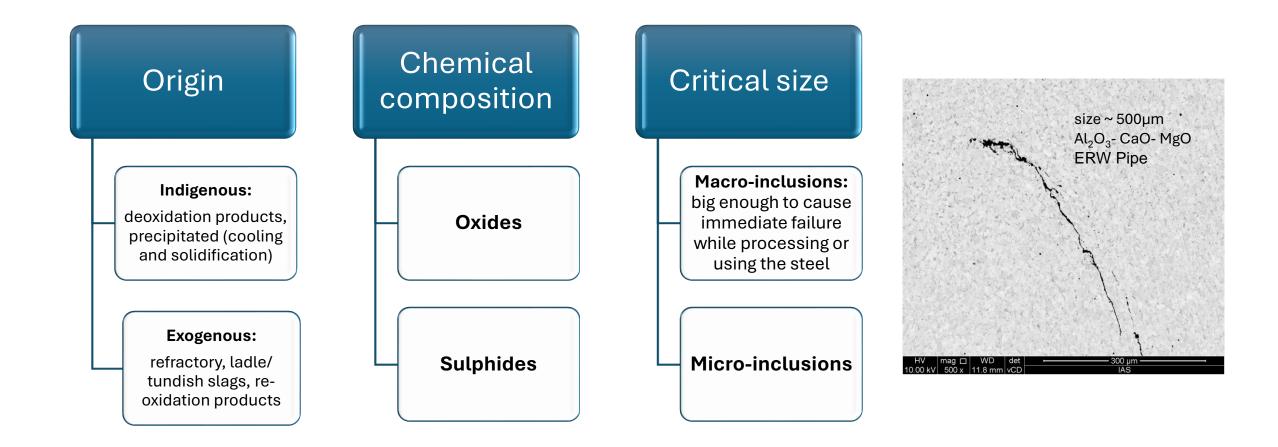

Figure 3. Material factors affecting sulfidee stress cracking (SSC)


Source: Adaptation from Hydrogen Embrittlement of OCTG and Linepipes -Tomohiko Omura and Kenji Kobayashi (2011)



Metallurgical factors for HIC resistance

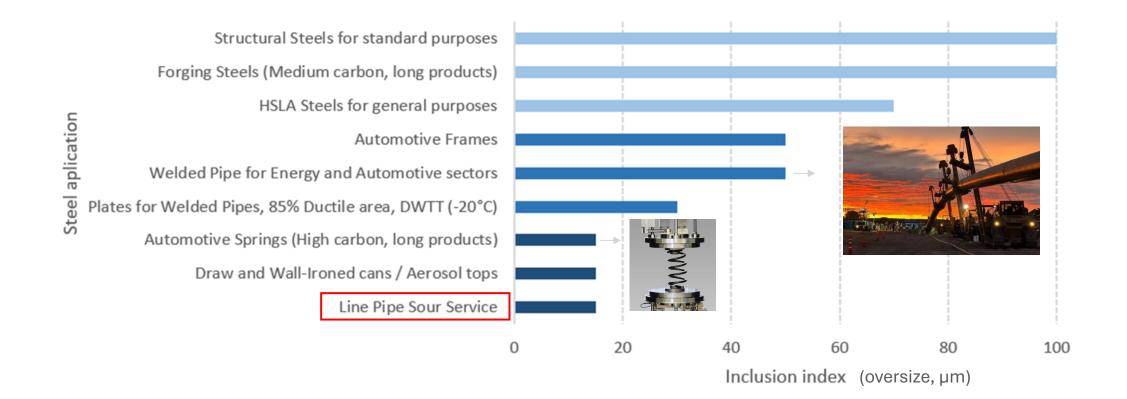
KILLING DEFECTS	IMPACT AND RISKS	TARGETS REGARDING MICROSTRUCTURE	
NMI - Oversize	Hydrogen trap sites	Control severity of MnS, Al2O3 , calcium oxysulfide CaAl(OS)	
INFIT - OVET SIZE	Stress raisers	Inclusion modification and shape control. Oversize control	
Coarse precipitates	Initiation sites and propagation of hydrogen-induced cracking	Nano-precipitates of TiN , TiNb(C,N)	
Banded microstructure	Nucleation and propagation of step cracks	Mainly fine FP/ NPF	
	Welded defects (hook cracks)		
MA particles	Crack propagation along interphase MA / matrix	Fine/isolated particles of martensite- austenite (MA).	
ria particles	Impact properties highly reduced		



MnS on the fracture surface API X52 HIC step cracks

Cracks along interphase MA/ matrix API X70

Coarse precipitates contribute to the propagation of HIC


Background: the origin of NMIs

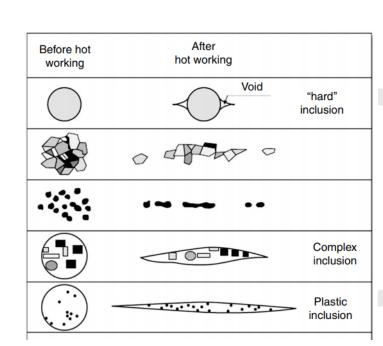
Steel cleanliness demand by product application

Steel Cleanliness Requirement

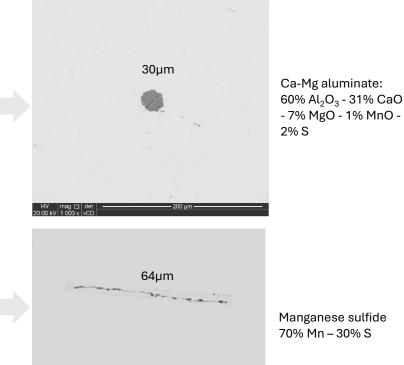
Clean steel Level 1: "Ultra" clean steel (high demands)
 Clean steel Level 2: Special steels (intermediate demands)
 Clean steel Level 3: Standard steel (low demands)

Source: Clean steels for more reliable and cost-effective steel products, F, Actis, R. Bruna, AISTECH (2024)

Relevant properties of NMIs


 ε_1 true elongation of the NMI, and

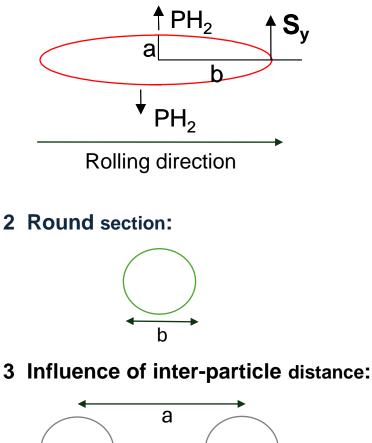
 ε_2 true elongation of the Steel matrix 0.6 FeO v 0.4 Mn in (Fe.Mn)O 0.2 v ^{0.1} **Ca-aluminates** 3 MgO. Al₂O₃ MgO . Al₂O₃ 0.2 Spinels 0.1 ν +MgO.Al₂O₃ 0 1.0 Fe-silicate +SiO₂ Silicates +CaFe pure SiO₂ ν 0.5 +Mn 0 MnS 1.0 Me. X = TeX=Se Mn, Me)(S, X) 0.5 800 1000 1200 1400 1600 Temperature (°C)


 ε_1

Relative plasticity v =

Effect of temperature on relative plasticity of NMIs, depending on their chemical composition. The curves are of semi-quantitative natura. Vasconcellos da Costa e Silva (2019)

Schematic illustration of the behaviour of NMIs after thermomechanical treatment depending on their relative plasticity at the working temperatures. Vasconcellos da Costa e Silva (2019)



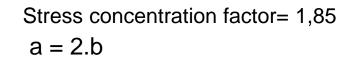
Manganese sulfide 70% Mn – 30% S

Stress concentration on trap sites

1 Elliptical section:

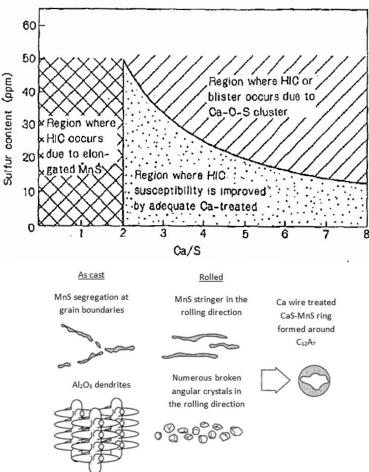
Hydrogen Traps	Binding energy (eV)	/
Grain boundary Cementite	0,19 0,19	ect _
Intertitials	0,25	g effect
Dislocations	0,26 - 0,32	Ascending
MnS	0,75	scel
Al ₂ O ₃	0,82	A
TiC	0,90	

 S_v = Stress concentration on the tip PH_2 = internal pressure of H₂

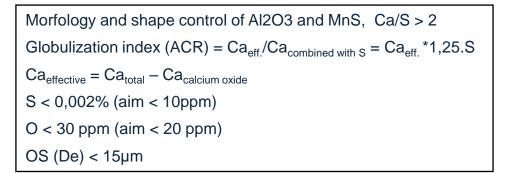

When a/b = 0,1 $S_{y}/PH_{2} = 16$

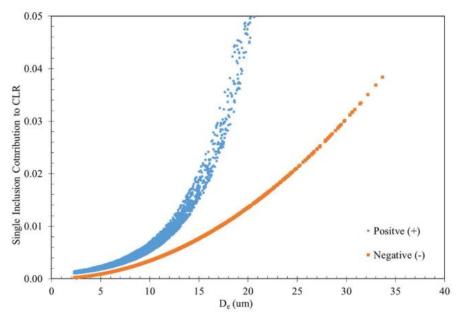
 $S_{v} =$

In this case a = b $S_V/PH_2 = 1$


3 Influence of inter-particle distance:

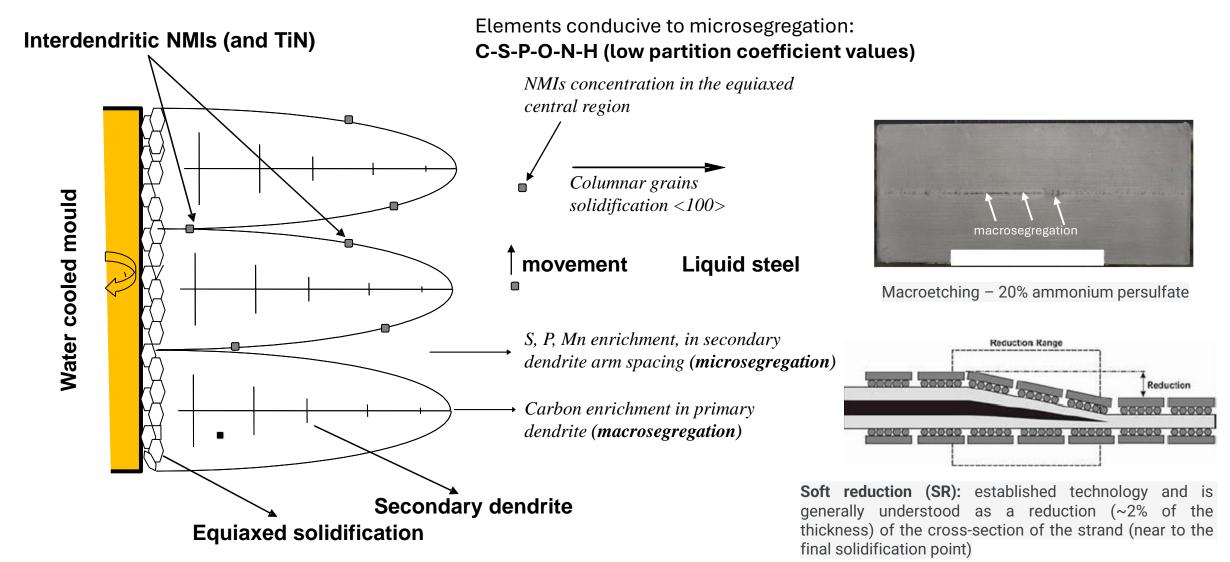
b


Inclusion modification and shape control

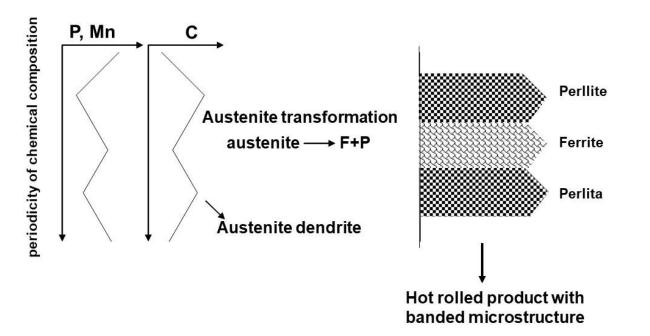

Influence of Ca/S ratio and sulfur content on improving the HIC resistance of a calcium-treated steel tested in solution of a0,5% acetic acid – 5% NaCl and H_2S A. Ikeda *et al.* Sumitomo Search, N°26 (1981)

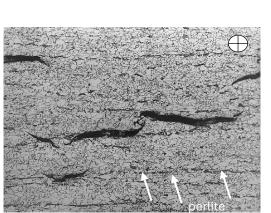
Schematic illustration of inclusion morphology with calcium- treated steel. Turkdogan, Fundamentals of Steelmaking, The Institute of Materials (1996).

HIC resistance:

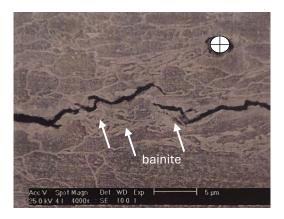


Effect of Oxide De on increasing CLR and decreasing CLR (trapping term) for a single inclusion. Ouhiba et al (2023)

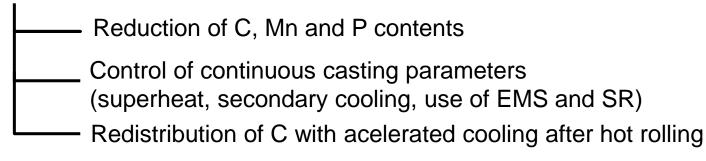

Identification of key process parameters


PRIMARY METALLURGY		SECONDARY METALLURGY			CONTINUOUS CASTING		
Pre- desulfurizatior	۱						
Hot metal sulphur pre treatment		Laddle Condition					
		Number of previous heats Thermal status	BOF/EAF	LF/AHF/Vacuum			
	•	MgO projection Residence time of	desulphurization Charge mix 	treatment Arrival temperature	Stirring Control		
		steel in ladle from tapping to CCM Porous plugs performance	Tupping competerate	 Upstream oxidation Previous desulphurization Ferroalloys and fluxes additions practice 	 Stirring time after tapping Argon stirring on heating process 	Reoxidation conditions	
References: 30F: Basic Oxygen Furn	ace		 ferroalloys, fluxes additions practice Bubbling time in laddle after tapping 	 Top slag adjustment Total addition of aluminum (tapping+ secondary) 	 Red zone (Soft stirring) Killing time (VTD/RH) Time from end of heating to end of treatment, no additions (LF) 	 Total Al drop Total N pick up Ca drop Alox (Total aluminum – Soluble aluminum) 	 CCM / Inspection Steel weight in tundish Variation of Steel level in mould SEN inmersión depth in mould Superheat
AF: Electric Arc Furnace F: Laddle Furnace AHF: Aluminum Heating /TD: Vacuum Tank Dega RH: Rurhstahl Heraeus D	e g Tempe asser			 Vacuum time/pressure specification 	 Flotation of inclusions 	 Aluminum ratio (Soluble aluminum/ Total aluminum) 	 Use of EMS/Soft reduction Slabs rejection due to events with quality impact Internal soundness by macroetching check

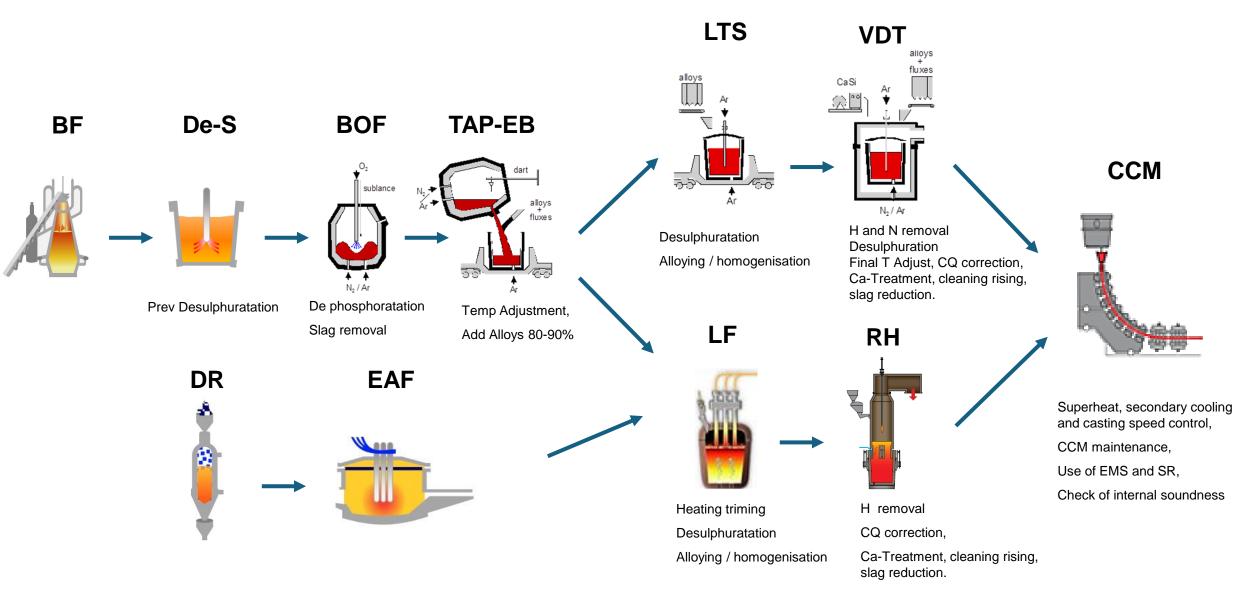
Schematic ilustration of solidification¹



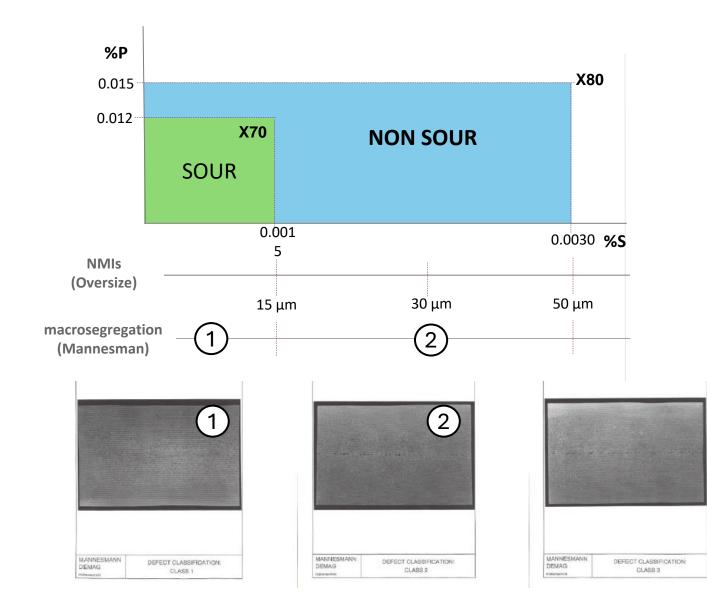
Microsegregation and banding

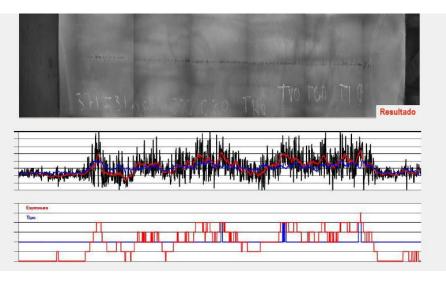


HIC step cracks

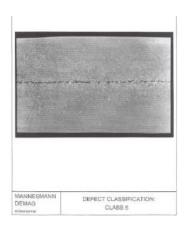


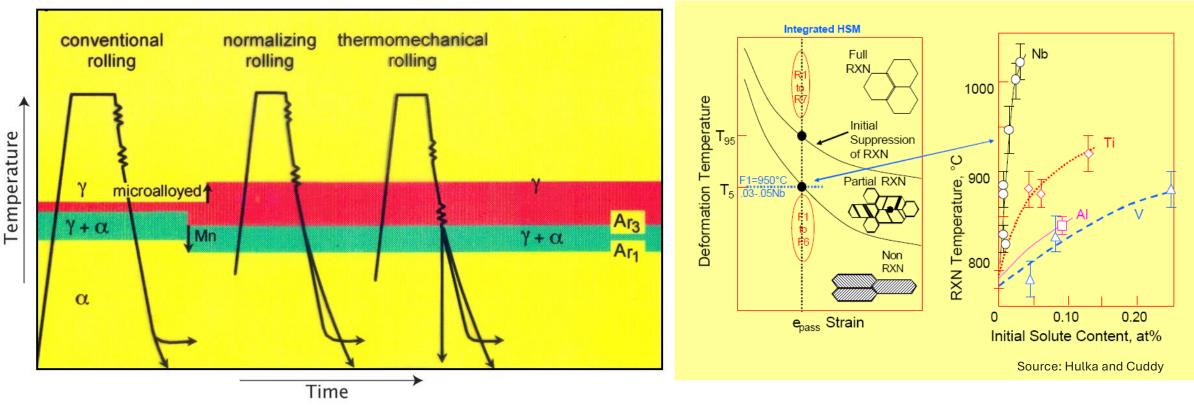
Crack propagation in mixed softer ferrite (180HV) and bainite (> 210HV) API X60, NbTiCuNi


Minimization of banding severity

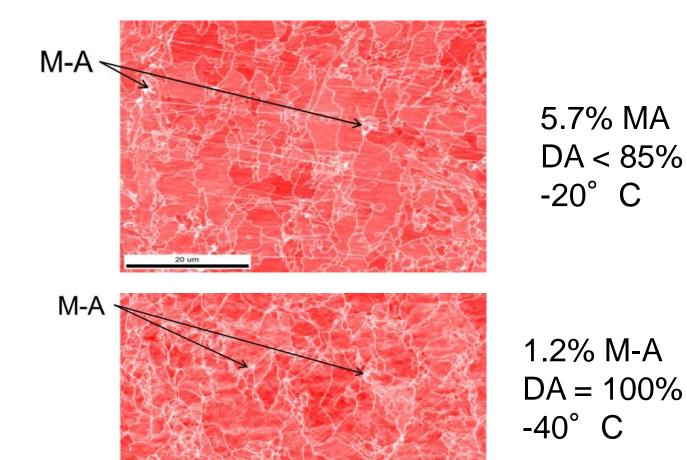


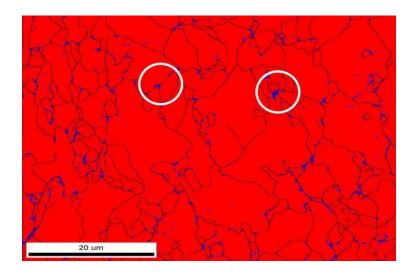
Technical approach : steelmaking overview


Residuals, steel cleanliness and soundness



Source: F. Ramstorfer et al. - COMPUTATIONAL CLASSIFICATION OF CENTRAL SEGREGATION OF PLATES BY IMAGE PROCESSING OF BAUMANN PRINTS, ABM Proceedings (2014)

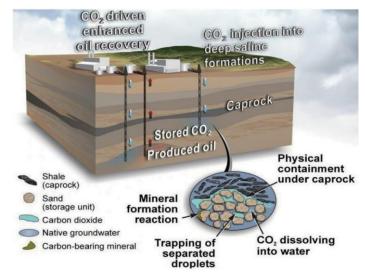

Thermomechanical processing (TMP)



Goal of the TMP: fine grain, isolated MA constituent

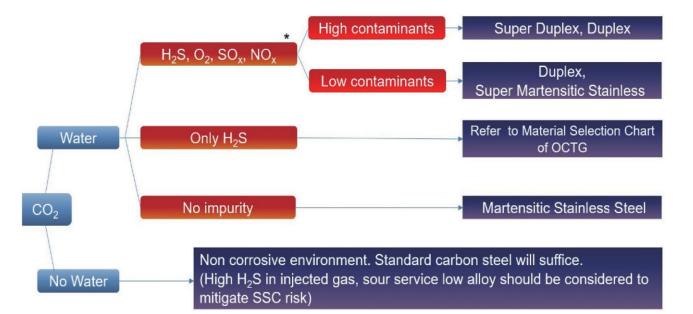
- Proper alloy design to increase the processing window as defined by T_{nr} and T_{ar3} ,
- Processes conditions control during hot rolling,
- Transformation control

MA control by TMCP, API X70 (t=12.7mm)



Source: Advanced Microstructural Characterization of a X-70 Microalloyed Steel for the Oil& Gas Industry. T. Perez, I. García, R. Bruna (2015)

Metallurgical factors to be controled: resume


KILLING DEFECTS	TARGETS REGARDING MICROSTRUCTURE	SOLUTIONS & CHALLENGES
NMI - Oversize	Control severity of MnS, Al2O3 , calcium oxysulfide CaAl(OS)	Best practice for production of ultra-clean steels (low S, H contents, Ca-treated steels)
	Inclusion modification and shape, maximum oversize (OS) control	OS < 15 μ m, globular oxide type (avoid sulfides and alumina types).
Coarse precipitates	Nano-precipitates of TiN , TiNb(C,N)	Low Nitrogen steels,Ti/N= 2.5-3.0 (sub-stoicheiometric ratio), mean particle size: 100nm Use of Electromagnetic stirring (EMS) and Sof reduction (SR) at the CCM
		<i>Steel design</i> : reduction of P, Mn and C contens.
Banded microstructure	Mainly fine FP/ NPF	Best practice for the casting high quality of slabs:
		- Superheat, secondary cooling and casting speed control,
		- Position control and alignment of the CCM equipment,
		- Use of EMS and SR reduction in strand to reduce micro ¯osegregation,
		- Chek of internal soundness (Mannesmann 1 maximum severity).
		Best practice for termomechanical rolling of microalloyed steels: proper alloy design,
		processes conditions during hot rolling and transformation control
MA particles	Fine/isolated particles of martensite- austenite (MA).	- Select alloy elements (Nb, Ni,) \rightarrow Reduce austenite/ ferrite starting temp. (Tar3)
		- Increase reduction rate in last pases \rightarrow Reduce final effective austenitic GS, big ΔT (Tnr-Tar3)
		- Reduce finishing temperature. Acelerated cooling \rightarrow redistribution of carbon during
		transformation
		- Hardness < 210 HV (hard spot control)

Corrosion in CO₂ enviroment (CCS)

Schematic image of CCS process

<u>• </u>			
Component	Corrosion effects		
CO ₂	•Balance Gas pH drop out		
	Oxidant: risk of localized corrosion		
O ₂	• Elemental Sulfur (S ₀) produced by reaction with H ₂ S.		
	\rightarrow risk of localized corrosion		
	Sulfuric acid (H ₂ SO ₄) produced.		
SO ₂	\rightarrow pH drop out		
	Possibility of producing Nitric acid (HNO3)		
NO ₂	\rightarrow pH drop out		
_	Oxidant: risk of localized corrosion		
TL C	• Risk of Hydrogen Embrittlement because H ₂ S acts		
H_2S	as a poison in Hydrogen penetration		

Conclusions:

- Research today focuses on overcoming technical concerns related to pipeline transmission, including the potential for hydrogen to embrittle the steel and welds used to fabricate the pipeline
- To fullfill this requeriments a **proper balance** of toughness, mechanical strength, weldability and resistance cracking of the pipe in the field is needed.
- Cracking resistance depends on both on reduction of the **initiation** sites and on reduction de factors that contribute to the **propagation** of hydrogen-induced cracking.
- By adopting and implementing a **tailor-made Best Practice** at the steelmaking and hot rolling processes steel suppliers can produce significant cleaner steels with the necessary microstructure
 - Due attention must be given for improving steel cleanliness and reducing the macro and microsegregation of elements such as S, P, O, N and H, in order to improve the behavior of the base metal and the welded joint.
 - Advanced process control of key process variables by using IA, ML, expert-system are highly recomended for quality prediction of the Steel supplied.
- This leads to an improved hydrogen pipelines with a novel approach based on **metallurgical reliability.**